Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
J Mater Chem B ; 11(20): 4511-4522, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-2317961

ABSTRACT

Viral particles bind to receptors through multivalent protein interactions. Such high avidity interactions on sensor surfaces are less studied. In this work, three polyelectrolytes that can form biosensing surfaces with different interfacial characteristics in probe density and spatial arrangement were designed. Quartz crystal microbalance, interferometry and atomic force microscopy were used to study their surface density and binding behaviors with proteins and virus particles. A multivalent adsorption kinetic model was developed to estimate the number of bonds from the viral particles bound to the polyelectrolyte surfaces. Experimental results show that the heterogeneous 3D surface with jagged forest-like structure enhances the virus capture ability by maximizing the multivalent interactions. As a proof of concept, specific coronavirus detection was achieved in spiked swab samples. These results indicate the importance of both probe density and their spatial arrangement on the sensing performance, which could be used as a guideline for rational biosensing surface design.


Subject(s)
Biosensing Techniques , Polyelectrolytes , Biosensing Techniques/methods , Quartz Crystal Microbalance Techniques/methods , Adsorption , Virion
2.
Phys Chem Chem Phys ; 25(18): 12882-12890, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2316511

ABSTRACT

The global spread of the new coronavirus COVID-19 has seriously affected human health and has caused a large number of deaths. Using molecular dynamics (MD) simulations to study the microscopic dynamic behavior of the virion provides an important means to study the pathogenic mechanism. In this work, we develop an ultra-coarse-grained (UCG) model of the SARS-CoV-2 virion from the authentic cryo-electron microscopy data, which enables MD simulation of the entire virion within microseconds. In addition, a hybrid all-atom and UCG (AA/UCG) virion model involving an all-atom spike protein is developed for the investigation of the spike protein interactions. A comparison of the conformational changes for the spike proteins as simulated in the hybrid model and that isolated in solution as in the free form reveals that the former is completely different from the latter. The simulation results demonstrate the necessity for the development of multiscale models to study the functions of proteins in the biomolecular complexes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cryoelectron Microscopy , Spike Glycoprotein, Coronavirus/metabolism , Molecular Dynamics Simulation , Virion/metabolism , Virion/ultrastructure
3.
Sci Signal ; 16(782): eabq1366, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2298370

ABSTRACT

Macrophages are key cellular contributors to the pathogenesis of COVID-19, the disease caused by the virus SARS-CoV-2. The SARS-CoV-2 entry receptor ACE2 is present only on a subset of macrophages at sites of SARS-CoV-2 infection in humans. Here, we investigated whether SARS-CoV-2 can enter macrophages, replicate, and release new viral progeny; whether macrophages need to sense a replicating virus to drive cytokine release; and, if so, whether ACE2 is involved in these mechanisms. We found that SARS-CoV-2 could enter, but did not replicate within, ACE2-deficient human primary macrophages and did not induce proinflammatory cytokine expression. By contrast, ACE2 overexpression in human THP-1-derived macrophages permitted SARS-CoV-2 entry, processing and replication, and virion release. ACE2-overexpressing THP-1 macrophages sensed active viral replication and triggered proinflammatory, antiviral programs mediated by the kinase TBK-1 that limited prolonged viral replication and release. These findings help elucidate the role of ACE2 and its absence in macrophage responses to SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Cytokines , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Macrophages/metabolism , Virion/metabolism
4.
J Gen Virol ; 104(4)2023 04.
Article in English | MEDLINE | ID: covidwho-2305800

ABSTRACT

The family Coronaviridae includes viruses with positive-sense RNA genomes of 22-36 kb that are expressed through a nested set of 3' co-terminal subgenomic mRNAs. Members of the subfamily Orthocoronavirinae are characterized by 80-160 nm diameter, enveloped virions with spike projections. The orthocoronaviruses, severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome-related coronavirus are extremely pathogenic for humans and in the last two decades have been responsible for the SARS and MERS epidemics. Another orthocoronavirus, severe acute respiratory syndrome coronavirus 2, was responsible for the recent global COVID-19 pandemic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Coronaviridae which is available at www.ictv.global/report/coronaviridae.


Subject(s)
COVID-19 , Coronaviridae , Viruses , Humans , Coronaviridae/genetics , Pandemics , Viruses/genetics , Virion/genetics , Genome, Viral , Virus Replication
5.
J Biol Chem ; 299(5): 104668, 2023 05.
Article in English | MEDLINE | ID: covidwho-2288832

ABSTRACT

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Subject(s)
COVID-19 , HSP90 Heat-Shock Proteins , Pyroptosis , SARS-CoV-2 , Virion , Humans , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , HSP90 Heat-Shock Proteins/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism , Viral Proteins/metabolism
6.
J Vis Exp ; (193)2023 03 17.
Article in English | MEDLINE | ID: covidwho-2287460

ABSTRACT

Water and wastewater-based epidemiology have emerged as alternative methods to monitor and predict the course of outbreaks in communities. The recovery of microbial fractions, including viruses, bacteria, and microeukaryotes from wastewater and environmental water samples is one of the challenging steps in these approaches. In this study, we focused on the recovery efficiency of sequential ultrafiltration and skimmed milk flocculation (SMF) methods using Armored RNA as a test virus, which is also used as a control by some other studies. Prefiltration with 0.45 µm and 0.2 µm membrane disc filters were applied to eliminate solid particles before ultrafiltration to prevent the clogging of ultrafiltration devices. Test samples, processed with the sequential ultrafiltration method, were centrifuged at two different speeds. An increased speed resulted in lower recovery and positivity rates of Armored RNA. On the other hand, SMF resulted in relatively consistent recovery and positivity rates of Armored RNA. Additional tests conducted with environmental water samples demonstrated the utility of SMF to concentrate other microbial fractions. The partitioning of viruses into solid particles might have an impact on the overall recovery rates, considering the prefiltration step applied before the ultrafiltration of wastewater samples. SMF with prefiltration performed better when applied to environmental water samples due to lower solid concentrations in the samples and thus lower partitioning rates to solids. In the present study, the idea of using a sequential ultrafiltration method arose from the necessity to decrease the final volume of the viral concentrates during the COVID-19 pandemic, when the supply of the commonly used ultrafiltration devices was limited, and there was a need for the development of alternative viral concentration methods.


Subject(s)
COVID-19 , Viruses , Humans , Animals , Wastewater , Ultrafiltration/methods , Water , Flocculation , Milk , Pandemics , Virion , RNA
7.
Sci Rep ; 13(1): 4610, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2283679

ABSTRACT

This study evaluates the functional capacity of CD4+ and CD8+ terminally-differentiated effector (TEMRA), central memory (TCM), and effector memory (TEM) cells obtained from the volunteers vaccinated with an aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac). The volunteers were followed for T cell immune responses following the termination of a randomized phase III clinical trial. Seven days and four months after the second dose of the vaccine, the memory T cell subsets were collected and stimulated by autologous monocyte-derived dendritic cells (mDCs) loaded with SARS-CoV-2 spike glycoprotein S1. Compared to the placebo group, memory T cells from the vaccinated individuals significantly proliferated in response to S1-loaded mDCs. CD4+ and CD8+ memory T cell proliferation was detected in 86% and 78% of the vaccinated individuals, respectively. More than 73% (after a short-term) and 62% (after an intermediate-term) of the vaccinated individuals harbored TCM and/or TEM cells that responded to S1-loaded mDCs by secreting IFN-γ. The expression of CD25, CD38, 4-1BB, PD-1, and CD107a indicated a modulation in the memory T cell subsets. Especially on day 120, PD-1 was upregulated on CD4+ TEMRA and TCM, and on CD8+ TEM and TCM cells; accordingly, proliferation and IFN-γ secretion capacities tended to decline after 4 months. In conclusion, the combination of inactivated whole-virion particles with aluminum adjuvants possesses capacities to induce functional T cell responses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aluminum , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Memory T Cells , Programmed Cell Death 1 Receptor , COVID-19/prevention & control , Adjuvants, Immunologic , Vaccination , Virion
8.
J Virol ; 97(3): e0165022, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2246712

ABSTRACT

Truncations of the cytoplasmic tail (CT) of entry proteins of enveloped viruses dramatically increase the infectivity of pseudoviruses (PVs) bearing these proteins. Several mechanisms have been proposed to explain this enhanced entry, including an increase in cell surface expression. However, alternative explanations have also been forwarded, and the underlying mechanisms for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein remain undetermined. Here, we show that the partial or complete deletion of the CT (residues 19 to 35) does not modify SARS-CoV-2 S protein expression on the cell surface when the S2 subunit is measured, whereas it is significantly increased when the S1 subunit is measured. We also show that the higher level of S1 in these CT-truncated S proteins reflects the decreased dissociation of the S1 subunit from the S2 subunit. In addition, we demonstrate that CT truncation further promotes S protein incorporation into PV particles, as indicated by biochemical analyses and cryo-electron microscopy. Thus, our data show that two distinct mechanisms contribute to the markedly increased infectivity of PVs carrying CT-truncated SARS-CoV-2 S proteins and help clarify the interpretation of the results of studies employing such PVs. IMPORTANCE Various forms of PVs have been used as tools to evaluate vaccine efficacy and study virus entry steps. When PV infectivity is inherently low, such as that of SARS-CoV-2, a CT-truncated version of the viral entry glycoprotein is widely used to enhance PV infectivity, but the mechanism underlying this enhanced PV infectivity has been unclear. Here, our study identified two mechanisms by which the CT truncation of the SARS-CoV-2 S protein dramatically increases PV infectivity: a reduction of S1 shedding and an increase in S protein incorporation into PV particles. An understanding of these mechanisms can clarify the mechanistic bases for the differences observed among various assays employing such PVs.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Humans , COVID-19/virology , Cryoelectron Microscopy , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virion/genetics , Virion/pathogenicity , Gene Expression Regulation, Viral/genetics
10.
Viruses ; 14(12)2022 12 14.
Article in English | MEDLINE | ID: covidwho-2163623

ABSTRACT

Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, leads to profound remodeling of cellular membranes, promoting viral replication and virion assembly. A full understanding of this drastic remodeling and the process of virion morphogenesis remains lacking. In this study, we applied room temperature transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) tomography to visualize the SARS-CoV-2 replication factory in Vero cells, and present our results in comparison with published cryo-EM studies. We obtained cryo-EM-like clarity of the ultrastructure by employing high-pressure freezing, freeze substitution (HPF-FS) and embedding, allowing room temperature visualization of double-membrane vesicles (DMVs) in a near-native state. In addition, our data illustrate the consecutive stages of virion morphogenesis and reveal that SARS-CoV-2 ribonucleoprotein assembly and membrane curvature occur simultaneously. Finally, we show the tethering of virions to the plasma membrane in 3D, and that accumulations of virus particles lacking spike protein in large vesicles are most likely not a result of defective virion assembly at their membrane. In conclusion, this study puts forward a room-temperature EM technique providing near-native ultrastructural information about SARS-CoV-2 replication, adding to our understanding of the interaction of this pandemic virus with its host cell.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , Vero Cells , Pandemics , Virion/ultrastructure
11.
J Infect Dis ; 226(11): 1897-1902, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2135321

ABSTRACT

BACKGROUND: The consequences of past coronavirus disease 2019 (COVID-19) infection for personal and population health are emerging, but accurately identifying distant infection is a challenge. Anti-spike antibodies rise after both vaccination and infection and anti-nucleocapsid antibodies rapidly decline. METHODS: We evaluated anti-membrane antibodies in COVID-19 naive, vaccinated, and convalescent subjects to determine if they persist and accurately detect distant infection. RESULTS: We found that anti-membrane antibodies persist for at least 1 year and are a sensitive and specific marker of past COVID-19 infection. CONCLUSIONS: Thus, anti-membrane and anti-spike antibodies together can differentiate between COVID-19 convalescent, vaccinated, and naive states to advance public health and research.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Vaccination , Public Health , Virion , Antibodies, Viral , Spike Glycoprotein, Coronavirus
12.
Commun Biol ; 5(1): 1210, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2116524

ABSTRACT

SARS-CoV-2 is a lipid-enveloped Betacoronavirus and cause of the Covid-19 pandemic. To study the three-dimensional architecture of the virus, we perform electron cryotomography (cryo-ET) on SARS-Cov-2 virions and three variants revealing particles of regular cylindrical morphology. The ribonucleoprotein particles packaging the genome in the virion interior form a dense, double layer assembly with a cylindrical shape related to the overall particle morphology. This organisation suggests structural interactions important to virus assembly.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Electrons , Cryoelectron Microscopy/methods , Virion
13.
ACS Sens ; 7(11): 3560-3570, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2115655

ABSTRACT

Current tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detect either the constituent nucleic acids/proteins of the viral particles or antibodies specific to the virus, but cannot provide information about viral neutralization by an antibody and the efficacy of an antibody. Such information is important about individuals' vulnerability to severe symptoms or their likelihood of showing no symptoms. We immobilized online SARS-CoV-2 spike (S1) protein and angiotensin-converting enzyme 2 (ACE2) into separate surface plasmon resonance (SPR) channels of a tris-nitrilotriacetic acid (tris-NTA) chip to simultaneously detect the anti-S1 antibody and viral particles in serum samples. In addition, with a high-molecular-weight-cutoff filter, we separated the neutralized viral particles from the free antibody molecules and used a sensing channel immobilized with Protein G to determine antibody-neutralized viral particles. The optimal density of probe molecules in each fluidic channel can be precisely controlled through the closure and opening of the specific ports. By utilizing the high surface density of ACE2, multiple assays can be carried out without regenerations. These three species can be determined with a short analysis time (<12 min per assay) and excellent sensor-to-sensor/cycle-to-cycle reproducibility (RSD < 5%). When coupled with an autosampler, continuous assays can be performed in an unattended manner at a single chip for up to 6 days. Such a sensor capable of assaying serum samples containing the three species at different levels provides additional insights into the disease status and immunity of persons being tested, which should be helpful for containing the SARS-CoV-2 spread during the era of incessant viral mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Surface Plasmon Resonance , Humans , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/diagnosis , Reproducibility of Results , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus , Virion/isolation & purification
14.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Article in English | MEDLINE | ID: covidwho-2112643

ABSTRACT

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Humans , Hemagglutinins , Antibodies, Viral , Vaccination , Hemagglutination Inhibition Tests , Vaccines, Inactivated , Macaca fascicularis , Virion , Immunoglobulin A , Immunoglobulin G , Nucleoproteins
15.
Biomolecules ; 12(11)2022 11 08.
Article in English | MEDLINE | ID: covidwho-2109921

ABSTRACT

Adsorption of human serum albumin (HSA) molecules on negatively charged polystyrene microparticles was studied using the dynamic light scattering, the electrophoretic and the solution depletion methods involving atomic force microscopy. Initially, the physicochemical characteristics of the albumin comprising the hydrodynamic diameter, the zeta potential and the isoelectric point were determined as a function of pH. Analogous characteristics of the polymer particles were acquired, including their size and zeta potential. The formation of albumin corona on the particles was investigated in situ by electrophoretic mobility measurements. The size, stability and electrokinetic properties of the particles with the corona were also determined. The particle diameter was equal to 125 nm, which coincides with the size of the SARS-CoV-2 virion. The isoelectric point of the particles appeared at a pH of 5. The deposition kinetics of the particles was determined by atomic force microscopy (AFM) under diffusion and by quartz microbalance (QCM) under flow conditions. It was shown that the deposition rate at a gold sensor abruptly vanished with pH following the decrease in the zeta potential of the particles. It is postulated that the acquired results can be used as useful reference systems mimicking virus adsorption on abiotic surfaces.


Subject(s)
COVID-19 , Nanoparticles , Humans , Polymers/chemistry , SARS-CoV-2 , Adsorption , Serum Albumin, Human/chemistry , Virion , Surface Properties
16.
J R Soc Interface ; 19(196): 20220525, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2097544

ABSTRACT

Budding allows virus replication and macromolecular secretion in cells through the formation of a membrane protrusion (bud) that evolves into an envelope. The largest energetic barrier to bud formation is membrane deflection and is trespassed primarily thanks to nucleocapsid-membrane adhesion. Transmembrane proteins (TPs), which later form the virus ligands, are the main promotors of adhesion and can accommodate membrane bending thanks to an induced spontaneous curvature. Adhesive TPs must diffuse across the membrane from remote regions to gather on the bud surface, thus, diffusivity controls the kinetics. This paper proposes a simple model to describe diffusion-mediated budding unravelling important size limitations and size-dependent kinetics. The predicted optimal virion radius, giving the fastest budding, is validated against experiments for coronavirus, HIV, flu and hepatitis. Assuming exponential replication of virions and hereditary size, the model can predict the size distribution of a virus population. This is verified against experiments for SARS-CoV-2. All the above comparisons rely on the premise that budding poses the tightest size constraint. This is true in most cases, as demonstrated in this paper, where the proposed model is extended to describe virus infection via receptor- and clathrin-mediated endocytosis, and via membrane fusion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virus Replication , Virion/metabolism , Diffusion
17.
EMBO J ; 41(22): e111653, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2056516

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host-virus interactions are essential for the development of new COVID-19 treatment strategies. Here, we show that SARS-CoV-2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by proteasomal degradation. No changes to other cyclins or cyclin-dependent kinases were observed. Further, cyclin D depletion was independent of SARS-CoV-2-mediated cell cycle arrest in the early S phase or S/G2/M phase. Cyclin D3 knockdown by small-interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co-immunoprecipitated with SARS-CoV-2 envelope (E) and membrane (M) proteins. We propose that cyclin D3 impairs the efficient incorporation of envelope protein into virions during assembly and is depleted during SARS-CoV-2 infection to restore efficient assembly and release of newly produced virions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cyclin D3 , Pandemics , Cell Line , Virion , COVID-19 Drug Treatment
18.
Indian J Ophthalmol ; 70(10): 3716-3718, 2022 10.
Article in English | MEDLINE | ID: covidwho-2055713

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccinations have been associated with a higher risk of thromboembolic events. There have been no reports of central retinal artery occlusion (CRAO) after vaccination with the indigenously developed Covaxin, and worldwide, there has been only one such isolated case after administration of the AstraZeneca vaccine. We report a case of a 44-year-old healthy man who presented with sudden painless vision loss in his left eye 10 days after receiving Covaxin. His best-corrected visual acuity was minimal perception of light, with a relative afferent pupillary defect. Fundus examination revealed arterial attenuation and macular cherry red spot, suggesting an acute CRAO. Optical coherence tomography showed macular swelling and disorganization of the inner layers due to ischemic sequelae. Blood work was normal and cardiovascular examination was unremarkable. The patient was kept on follow-up. To our knowledge, this is the first case of an isolated CRAO after Covaxin administration, but further studies are needed to evaluate this potential association.


Subject(s)
COVID-19 , Retinal Artery Occlusion , Vaccines , Adult , Humans , Male , Retinal Artery Occlusion/chemically induced , Retinal Artery Occlusion/diagnosis , Vaccination , Virion
19.
PLoS Pathog ; 18(9): e1010832, 2022 09.
Article in English | MEDLINE | ID: covidwho-2039448

ABSTRACT

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals.


Subject(s)
COVID-19 , Monomeric GTP-Binding Proteins , Prodrugs , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Thioguanine , Virion/metabolism
20.
Sci Rep ; 12(1): 1724, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1663979

ABSTRACT

This study introduces localized surface plasmon resonance (L-SPR) mediated heating filter membrane (HFM) for inactivating universal viral particles by using the photothermal effect of plasmonic metal nanoparticles (NPs). Plasmonic metal NPs were coated onto filter membrane via a conventional spray-coating method. The surface temperature of the HFM could be controlled to approximately 40-60 °C at room temperature, owing to the photothermal effect of the gold (Au) NPs coated on them, under irradiation by visible light-emitting diodes. Due to the photothermal effect of the HFMs, the virus titer of H1Npdm09 was reduced by > 99.9%, the full inactivation time being < 10 min, confirming the 50% tissue culture infective dose (TCID50) assay. Crystal violet staining showed that the infectious samples with photothermal inactivation lost their infectivity against Mardin-Darby Canine Kidney cells. Moreover, photothermal inactivation could also be applied to reduce the infectivity of SARS-CoV-2, showing reduction rate of 99%. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to confirm the existence of viral genes on the surface of the HFM. The results of the TCID50 assay, crystal violet staining method, and qRT-PCR showed that the effective and immediate reduction in viral infectivity possibly originated from the denaturation or deformation of membrane proteins and components. This study provides a new, simple, and effective method to inactivate viral infectivity, leading to its potential application in various fields of indoor air quality control and medical science.


Subject(s)
COVID-19/virology , Hot Temperature , Light , Metal Nanoparticles , Micropore Filters , SARS-CoV-2 , Surface Plasmon Resonance/methods , Virion , Virus Inactivation , Air Pollution, Indoor , Animals , Cells, Cultured , Dogs , Gold/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL